Multiplication operators on non-commutative spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauge invariant operators in field theories on non - commutative spaces

We review some selected aspects of the construction of gauge invariant operators in field theories on non-commutative spaces and their relation to the energy momentum tensor as well as to the non-commutative loop equations. To appear in the Proceedings of the RTN meeting “The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions”, Corfu, September 13-20, 2001 dorn@...

متن کامل

Multiplication Operators on Generalized Lorentz-zygmund Spaces

The invertible, compact and Fredholm multiplication operators on generalized Lorentz-Zygmund (GLZ) spaces Lp,q;α, 1 < p ≤ ∞, 1 ≤ q ≤ ∞, α in the Euclidean space R, are characterized in this paper.

متن کامل

Matrix multiplication operators on Banach function spaces

Let (Ω,Σ,μ) be a σ -finite complete measure space and C be the field of complex numbers. By L(μ ,CN), we denote the linear space of all equivalence classes of CN-valued Σ-measurable functions on Ω that are identified μ-a.e. and are considered as column vectors. Let M◦ denote the linear space of all functions in L(μ ,CN) that are finite a.e. With the topology of convergence in measure on the set...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2019

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2019.03.001